Classification of Health and Nutritional Status of Toddlers Using the Naïve Bayes Classification
##plugins.themes.bootstrap3.article.main##
Abstract
Life is characterized by the presence of symptoms of growth and development. The growth and development of the degree of health of each individual are different. In this case, one of the efforts to improve health status is to improve nutritional status. Nutritional status is the state of the body related to food consumption patterns and the use of nutrients that are tailored to the body's needs. Improving nutritional status is useful for increasing body resistance and promoting normal growth. In the daily actualization of the nutritional status of toddlers at the posyandu, it is usually obtained through anthropometric measurements, namely by using the weight/age index or weight-for-age to determine nutritional status. However, in measuring with anthropometry, there was confusion in determining nutritional quality, so to get accurate results, a data mining method is needed, namely the Naive Bayes Classification (NBC) Algorithm, which will be implemented in research. With this research, it is hoped that it can help posyandu cadres in the Baros sub-district, Cimahi sub-district, and Cimahi city determine the level of health and nutritional status of toddlers better and more accurately.
##plugins.themes.bootstrap3.article.details##
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish articles in CoreID Journal agree to the following terms:
- Authors retain copyright of the article and grant the journal right of first publication with the work simultaneously licensed under a CC-BY-SA or The Creative Commons Attribution–ShareAlike License.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
N. Aeni, “Pandemi COVID-19: Dampak Kesehatan, Ekonomi, & Sosial,” J. Litbang Media Inf. Penelitian, Pengemb. dan IPTEK, vol. 17, no. 1, pp. 17–34, 2021, doi: 10.33658/jl.v17i1.249.
P. Soewondo, G. M. K. Sakti, D. O. Irawati, and ..., “Potret Adaptasi Dan Inovasi Layanan Gizi Di Masa Pandemi Covid-19: Studi Kasus Di 8 Kabupaten/Kota Di Indonesia,” … Forum Ilm. Tah. …, pp. 25–26, 2020, [Online]. Available: http://jurnal.iakmi.id/index.php/FITIAKMI/article/view/64
G. G. Sari and W. Wirman, “Telemedicine sebagai Media Konsultasi Kesehatan di Masa Pandemic COVID 19 di Indonesia,” J. Komun., vol. 15, no. 1, pp. 43–54, 2021, doi: 10.21107/ilkom.v15i1.10181.
R. Widaryanti, “Cegah Stunting Pada Masa Pandemi Covid-19 Dengan Pembentukan Srikandi Pmba,” Din. J. Pengabdi. Kpd. Masy., vol. 5, no. 4, pp. 979–985, 2021, doi: 10.31849/dinamisia.v5i4.5699.
A. P. Isnarti, A. Nurhayati, and R. Patriasih, “Pengetahuan Gizi Ibu Yang Memiliki Anak Usia Bawah Dua Tahun Stunting Di Kelurahan Cimahi,” Media Pendidikan, Gizi dan Kuliner, vol. 8, no. 2, pp. 1–6, 2019.
Dinkes Cimahi, “Dinkes Kota Cimahi, 2019,” J. Phys. A Math. Theor., vol. 44, no. 8, pp. 1689–1699, 2019, [Online]. Available: www.dinkes.kotacimah.go.id
F. Sidik, I. Suhada, A. H. Anwar, and F. N. Hasan, “Analisis Sentimen Terhadap Pembelajaran Daring Dengan Algoritma Naive Bayes Classifier,” J. Linguist. Komputasional, vol. 5, no. 1, p. 34, 2022, doi: 10.26418/jlk.v5i1.79.
M. Irfan, P. S. Dewi, W. B. Zulfikar, C. Slamet, and I. Taufik, “Sentiment Analysis as Assessment of the COVID-19 Social Assistance Pollemic using Random Forest Algorithm,” Proceeding 2022 8th Int. Conf. Wirel. Telemat. ICWT 2022, no. December 2020, 2022, doi: 10.1109/ICWT55831.2022.9935483.
S. Sendari, T. Widyaningtyas, and N. A. Maulidia, “Classification of Toddler Nutrition Status with Anthropometry using the K-Nearest Neighbor Method,” ICEEIE 2019 - Int. Conf. Electr. Electron. Inf. Eng. Emerg. Innov. Technol. Sustain. Futur., pp. 154–158, 2019, doi: 10.1109/ICEEIE47180.2019.8981408.
D. Gustian, B. Lestari, N. S. Rejeki, and N. M. Zasmine, “Fuzzy Inference System in Determining Nutritional Status of Toddlers,” 6th Int. Conf. Comput. Eng. Des. ICCED 2020, pp. 1–6, 2020, doi: 10.1109/ICCED51276.2020.9415781.
M. Irfan, P. Alkautsar, A. R. Atmadja, and Wildan Budiawan Zulfikar, “Diagnosis of Asthma Disease and The Levels using Forward Chaining and Certainty Factor,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 6, no. 5, pp. 761–767, 2022, doi: 10.29207/resti.v6i5.4123.
E. Oktavianti, A. R. Yuly, and F. Nugrahani, “Implementation of Naïve Bayes Classification Algorithm on Infant and Toddler Nutritional Status,” Proc. - 2019 2nd Int. Conf. Comput. Informatics Eng. Artif. Intell. Roles Ind. Revolut. 4.0, IC2IE 2019, pp. 170–174, 2019, doi: 10.1109/IC2IE47452.2019.8940894.
H. Herman, S. Sunardi, and V. Muslimah, “Metode Dempster Shafer pada Sistem Pakar Penentuan Penyakit Bayi,” JURIKOM (Jurnal Ris. Komputer), vol. 9, no. 5, p. 1643, 2022, doi: 10.30865/jurikom.v9i5.4908.
L. Affandi, V. N. Wijayanigrum, and P. A. W. P. Yacobus, “Sistem Pakar Rekomendasi Menu Makanan Untuk Mencukupi Kebutuhan Gizi Ibu Menyusui,” Semin. Inform. Apl. Polinema, pp. 64–69, 2020.
P. Y. Pane, A. Anaria, and A. S. Eveline, “Perbedaan Status Gizi pada Balita Sebelum dan Sesudah Pandemi Covid-19,” J. Penelit. Perawat Prof., vol. 4, no. 1, pp. 7–16, 2022, [Online]. Available: http://jurnal.globalhealthsciencegroup.com/index.php/JPPP/article/download/83/65
Á. H. de Mendonça, A. E. Iribarne, and A. Yurkina, Data mining for the masses, vol. 8, no. 16. 2017. doi: 10.54789/rince.16.4.
M. Y. Titimeidara and W. Hadikurniawati, “Implementasi Metode Naïve Bayes Classifier Untuk Klasifikasi Status Gizi Stunting Pada Balita,” J. Ilm. Inform., vol. 9, no. 01, pp. 54–59, 2021, doi: 10.33884/jif.v9i01.3741.
A. D. W. M. Sidik, I. Himawan Kusumah, A. Suryana, Edwinanto, M. Artiyasa, and A. Pradiftha Junfithrana, “Gambaran Umum Metode Klasifikasi Data Mining,” Fidel. J. Tek. Elektro, vol. 2, no. 2, pp. 34–38, 2020, doi: 10.52005/fidelity.v2i2.111.
A. S. R. Sinaga and D. Simanjuntak, “Sistem Pakar Deteksi Gizi Buruk Balita Dengan Metode Naïve Bayes Classifier,” J. Inkofar, vol. 1, no. 2, pp. 54–60, 2020, doi: 10.46846/jurnalinkofar.v1i2.110.