Classification of Non-Civil Servant Performance Appraisal Using Naïve Bayes Classifier Algorithm

##plugins.themes.bootstrap3.article.main##

Sofia Dewi

Abstract

Employee performance assessment is a way to measure the level of employee productivity. In the process of assessing the performance of Non-Civil Servants (non-PNS) employees at the Regional Technical Implementation Unit of Education and Training of Cooperatives and Entrepreneurs (UPTD P3W) at this time, it is required to classify data based on several factors to find out whether the employee fits into the eligible category or not as the best employee to become a civil servant (PNS) candidate. The purpose of this research is to make it easier to determine the classification of the performance assessment of non-PNS employees at UPTD P3W using the Naïve Bayes Classifier Algorithm and to determine the level of accuracy in the classification of the performance assessment. In this study, the authors used 498 data as training data and 105 data as testing data for manual testing in Excel and for testing using RapidMiner tools. Based on the analysis in the study, the result of the predictions determines the best employees to become candidates for civil servants quickly and accurately, while from the tests performed by comparing training data and with data testing using RapidMiner tools, the accuracy rate is 84.76%.

##plugins.themes.bootstrap3.article.details##

How to Cite
[1]
S. Dewi, “Classification of Non-Civil Servant Performance Appraisal Using Naïve Bayes Classifier Algorithm”, coreid, vol. 1, no. 2, pp. 75–82, Jul. 2023.


Section
Articles

References

M. P. Sari, “The Influence of Leadership on Work Discipline: A Perceptual Study of Employees at the Regional People’s Credit Bank LPK Jalancagak Subang Company,” Indonesia University of Education, 2015.

W. W. Sari and B. Arianto, “Kinerja Karyawan PT. Loka Refractories Wira Jatim Ditinjau dari Stres Kerja dan Lingkungan Kerja,” Mak. J. Manaj., vol. 8, no. 1, pp. 45–55, Jul. 2022.

W. Widodo, “PENGARUH KOMPENSASI DAN MOTIVASI TERHADAP KINERJA KARYAWAN SEKRETARIAT NASIONAL PEMBERDAYAAN PEREMPUAN KEPALA KELUARGA,” J. Manaj. Bisnis Krisnadwipayana, 2017.

Y. Mulyani, “Penerapan Absensi Online Berbasis Android pada Peningkatan Kedisiplinan dan Kinerja Guru Pegawai Negeri Sipil pada Bidang PAI,” J. Educ. FKIP UNMA, vol. 6, no. 1, pp. 205–208, Jul. 2020.

P. W. Kastawan, D. M. Wiharta, and M. Sudarma, “Implementasi Algoritma C5.0 pada Penilaian Kinerja Pegawai Negeri Sipil,” Maj. Ilm. Teknol. Elektro, vol. 17, no. 3, p. 371, 2018.

M. R. Hamdalah, K. Muhammad, and telma anis safitri, “Analisis Kinerja Perusahaan Sebagai Upaya Meningkatkan Kinerja Perusahaan Menggunakan Metode Balanced Scorecard (Studi Kasus: PT. XYZ),” J. Pendidik. dan Teknol. Indones., vol. 1, no. 1, pp. 27–33, Jan. 2021.

M. E. Widyaningrum and M. E. (Design & L. Widiana, “EVALUASI KINERJA:Untuk Meningkatkan Produktifitas Karyawan Perusahaan,” 2020.

S. dan R. Damayanti, “KEPUASAN KERJA DAN KINERJA KARYAWAN Tinjauan dari Dimensi Iklim Organisasi, Kreativitas Individu, dan Karakteristik Pekerjaan,” Yogyakarta: Indomedia Pustaka, pp. 1–85, Feb. 2017.

A. Utaminingsih, “Perilaku Organisasi: Kajian Teoritik & Empirik terhadap Budaya Organisasi ... - Alifiulahtin Utaminingsih - Google Books,” UB Press, 2014. [Online]. Available: https://books.google.co.id/books?hl=en&lr=&id=-wVRDwAAQBAJ&oi=fnd&pg=PA119&dq=Kriteria+yang+sangat+mempengaruhi+penilaian+kinerja+antara+lain:+masa+kerja,+usia,+jenis+kelamin,+divisi,+status,+pendidikan,+pekerjaan,+perilaku+kerja,+aspek+kepribadian,+aspek. [Accessed: 08-Aug-2022].

A. D. Y. Umaran, “Kampanye PR dalam pengembangan wirausaha: Studi terhadap program wirausaha baru (WUB) UPTD P3W Dinas Koperasi dan Usaha Kecil (KUK) Provinsi Jawa Barat,” UIN Sunan Gunung Djati Bandung, 2019.

N. Engkus, Suparman and D. F. Sulistia, “Peranan Pembinaan Dinas Koperasi Dan Usaha Kecil Jawa Barat Dalam Memajukan Perkoperasian Di Daerah Koperasi sebagai sokoguru dan Masalah Lemahnya kesadaran Lemahnya partisipasi Lemahnya kedisiplinan Lemahnya jiwa kewirausahaan Lemahnya keterampilan Lemah,” J. Ilmu Adm. Publik, vol. 7, no. 2, pp. 58–70, 2019.

M. Irfan, W. Uriawan, O. T. Kurahman, M. A. Ramdhani, and I. A. Dahlia, “Comparison of Naive Bayes and K-Nearest Neighbor methods to predict divorce issues,” IOP Conf. Ser. Mater. Sci. Eng., vol. 434, no. 1, p. 012047, Dec. 2018.

W. B. Zulfikar and N. Lukman, “Comparison of Naïve Bayes Classifier and Nearest Neighbor for Eye Disease Identification,” J. Online Inform., vol. 1, no. 2, Dec. 2016.

O. Arifin and T. B. Sasongko, “Comparative Analysis of Performance Levels between Support Vector Machine and Naïve Bayes Classifier Methods,” Semin. Nas. Teknol. Inf. dan Multimed. 2018, vol. 6, no. 1, pp. 67–72, 2018.

E. Rohadi, A. Amalia, J. D. Bagaskara, B. Harijanto, and S. Adhisuwignjo, “GIS for coffee shops classification and routing using Naive Bayes method,” IOP Conf. Ser. Mater. Sci. Eng., vol. 732, no. 1, p. 012079, Jan. 2020.

D. Jurafsky and J. Martin, “Naive Bayes and Sentiment Classification,” Speech Lang. Process., pp. 1–19, 2017.

A. F. Hidayatullah, C. I. Ratnasari, and S. Wisnugroho, “Analysis of Stemming Influence on Indonesian Tweet Classification,” Telkomnika (Telecommunication Comput. Electron. Control., 2016.

I. Rahmayuni, “Perbandingan Performansi Algoritma C4.5 dan Cart Dalam Klasifikasi Data Nilai Mahasiswa Prodi Teknnik Komputer Politeknik Negeri Padang,” J. TeknoIf, vol. 2, no. 1, May 2014.

D. Kurniawan and D. M. Yasir, “Optimization Sentimen Analysis using CRISP-DM and Naive Bayes Methods Implemented on Social Media,” Cybersp. J. Pendidik. Teknol. Inf., vol. 6, no. 2, pp. 74–85, Oct. 2022.

M. Berdasarkan Dosen, dan Hasil Belajar Eka Sabna, S. Hang Tuah Pekanbaru Jl Mustafa Sari No, and T. Selatan Pekanbaru, “Penerapan Data Mining Untuk Memprediksi Prestasi Akademik Mahasiswa Berdasarkan Dosen, Motivasi, Kedisiplinan, Ekonomi, dan Hasil Belajar,” J. CoreIT J. Has. Penelit. Ilmu Komput. dan Teknol. Inf., vol. 2, no. 2, pp. 41 – 44, Dec. 2016.

D. H. Kamagi and S. Hansun, “Implementasi Data Mining dengan Algoritma C4.5 untuk Memprediksi Tingkat Kelulusan Mahasiswa,” J. Ultim., vol. 6, no. 1, pp. 15–20, Jun. 2014.

N. Lukman, B. Subaeki, H. N. Abdullah, A. R. Atmadja, and M. Wildanuddin, “Prediction of national examination question using C4.5 algorithm,” in Journal of Physics: Conference Series, 2019, vol. 1402, no. 7.

W. Zhang and F. Gao, “An Improvement to Naive Bayes for Text Classification,” Procedia Eng., vol. 15, pp. 2160–2164, 2011.

M. M. Saritas and A. Yasar, “Performance Analysis of ANN and Naive Bayes Classification Algorithm for Data Classification,” Int. J. ofIntelligent Syst. Appl. Eng., vol. 7, no. 2, 2019.

J. Chen, H. Huang, S. Tian, and Y. Qu, “Feature selection for text classification with Naïve Bayes,” Expert Syst. Appl., vol. 36, no. 3, pp. 5432–5435, Apr. 2009.