Comparison of Rainfall Prediction Results in South Bangka Regency Using Support Vector Regression and SARIMA

##plugins.themes.bootstrap3.article.main##

Pitra Wati
Adriyansyah Adriyansyah
Ineu Sulistiana

Abstract

Rainfall is one of the key climate variables. It plays an important role in the hydrological cycle. In the field of agriculture, it is crucial as it determines the availability of water for crops, helping farmers manage water scarcity issues. South Bangka is one of the districts with the highest rice production levels compared to other districts in the Bangka Belitung Islands Province. This study aims to predict the rainfall in South Bangka for the next four years, from January 2024 to December 2027, using the Support Vector Regression (SVR) and SARIMA methods. The results of this study indicate that the SVR method is the best for prediction compared to the SARIMA method, with an average MAPE value of 0.03%. The kernel used is the Radial Basis Function (RBF), with parameter values including epsilon (ԑ) of 0.0001, Cost (C) of 1000, and gamma (γ) of 235. The MAPE value for the training data is 0.045%, and for the test data, it is 0.015%. The best SARIMA model is (3,1,3)(1,1,3)24 with a MAPE value of 15.51%.

##plugins.themes.bootstrap3.article.details##

How to Cite
[1]
P. Wati, A. Adriyansyah, and I. Sulistiana, “Comparison of Rainfall Prediction Results in South Bangka Regency Using Support Vector Regression and SARIMA”, coreid, vol. 2, no. 3, pp. 86–92, Nov. 2024.


Section
Articles

References

Kafara, Z., Rumlawang, F.Y. Dan Sinay, L.J. (2017) “Peramalan Curah Hujan Dengan Pendekatan Seasonal Autoregressive Integrated Moving Average (Sarima),” BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 11(1), Hal. 63–74. Doi:10.30598/Barekeng vol 11 iss 1 pp. 63-74

Amanda, R., Yasin, H. Dan Prahutama, A. (2014) “Analisis Support Vector Regression (SVR) Dalam Memprediksi Kurs Rupiah Terhadap Dollar Amerika Serikat,” Jurnal Gaussian, 3(4), Hal. 849–857.

Cahyono, R.E. Dan Sugiono, J.P. (2019) “Analisis Kinerja Metode Support Vector Regression (SVR) Dalam Memprediksi Indeks Harga Konsumen (Performance Analysis Of Support Vector Regression (SVR) Methods In Predicting The Consumer Price Index),” Jurnal Teknologi Informasi Dan Multimedia, 1(2), Hal. 106–116. Tersedia Pada: Www.Siskaperbapo.Com.

Diantika, A.S. Dan Firmanto, Y. (2019) “Implementasi Machine Learning Pada Aplikasi Penjualan Produk Digital (Studi Pada Grabkios),” Jurnal Ilmiah Mahasiswa FEB, 53(9), Hal. 1689–1699.

Fahmi, F. (2021) “Model Support Vector Regression (SVR) Berdimensi Tinggi Dengan Pendekatan Fungsi Kernel Berbeda Untuk Peramalan Harga Saham TLKM: Sebuah Pemodelan Deret Waktu Selama Masa Pandemi Covid-19,” Jurnal Infomedia, 5(2), Hal. 44. Doi:10.30811/Jim.V5i2.2033.

Fahrusyiana, G.E. (2019) “Peramalan Angka Penderita Penyakit TBC Di Provinsi Jawa Timur Menggunakan Metode Support Vector Machine.”

Hedianti, E.S. (2019) “Peramalan Harga Saham Dengan Menggunakan Metode Support Vector Regression (SVR).” Tersedia Pada: Https://Repository.Its.Ac.Id/60693/%0Ahttps://Repository.Its.Ac.Id/60693/1/05211540000014-Undergraduate_Theses.Pdf.

Purnama, D.I. Dan Setianingsih, S. (2020) “Support Vector Regression (SVR) Model For Forecasting Number Of Passengers On Domestic Flights At Sultan Hasanudin Airport Makassar,” Jurnal Matematika, Statistika Dan Komputasi, 16(3), Hal. 391. Doi:10.20956/Jmsk.V16i3.9176.

Fahrudin, R. Dan Sumitra, I.D. (2020) “Peramalan Inflasi Menggunakan Metode Sarima Dan Single Exponential Smoothing (Studi Kasus: Kota Bandung),” Majalah Ilmiah UNIKOM, 17(2), Hal. 111–120. Doi: 10. 34010/ Miu. V17i2. 3180.

BPS Provinsi Kepulauan Bangka Belitung (2023) “Provinsi Kepulauan Bangka Belitung Dalam Angka 2022.”

Rais, Z. (2022) “Analisis Support Vector Regression (Svr) Dengan Kernel Radial Basis Function (Rbf) Untuk Memprediksi Laju Inflasi Di Indonesia,” VARIANSI: Journal Of Statistics And Its Application On Teaching And Research, 4(1), Hal. 30–38. Doi:10.35580/Variansiunm13.

Martha, S. Dan Sulistianingsih, E. (2019) “SUPPORT VECTOR REGRESSION ( SVR ),” 08(1), Hal. 1–10.

A. Adriyansyah and S. Saprizal, “Prediksi Ketersediaan Air Embung Kolong Kebintik Sebagai Sumber Air Baku Menggunakan Jaringan Syaraf Tiruan,” Publikasi Riset Orientasi Teknik Sipil (Proteksi), vol. 6, no. 1, pp. 110–117, Jun. 2024, doi: 10.26740/proteksi.v6n1.p110-117.

Christie, G., Hatidja, D. Dan Tumilaar, R. (2022) “Penerapan Metode SARIMA Dalam Model Intervensi Fungsi Step Untuk Memprediksi Jumlah Pegunjung Objek Wisata Londa Application Of The SARIMA Method In The Step Function Intervention To Predict The Number Of Visitors At Londa Tourism Object,” 22(2), Hal. 96–103.

Maulana, N.D., Setiawan, B.D. Dan Dewi, C. (2019) “Implementasi Metode Support Vector Regression (SVR) Dalam Peramalan Penjualan Roti (Studi Kasus : Harum Bakery),” Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 3(3), Hal. 2986–2995.